Instrumentation

L1 INSTRUMENTATION

LEVEL 1

Curriculum Notes

- 187.5 Hours
- Includes 72.5 hours of Core Curriculum, which is a prerequisite for Level 1 completion and must be purchased separately.
- Downloadable instructor resources that include module tests, PowerPoints®, and performance profile sheets are available at www.nccer.org/irc.

PAPERBACK

Trainee Guide: $67

Individual Modules: $20

MODULES

The modules listed below are included in the Trainee Guide. The following ISBNs are for ordering individual modules only.

Instrumentation Safety Practices (12.5 Hours)
(Module ID 12115-14) Covers precautions for electrical hazards found on the job and teaches the OSHA-mandated lockout/tagout procedure. Identifies safety practices related to potentially hazardous tools and materials.

Craft-Related Mathematics (10 Hours)
(Module ID 12119-14) Covers basic concepts of the metric system and the conversion of English units to metric units. Also reviews basic algebra, geometric figures, and calculations associated with triangles.

Instrument Drawings and Documents Part One (7.5 Hours)
(Module ID 12120-14) Identifies and describes the types of drawings used in instrumentation work and familiarizes trainees with basic instrument symbols, lines, and abbreviations used on drawings.

Inspect, Handle, and Store Instrumentation Materials (2.5 Hours)
(Module ID 12102-14) Covers the methods used in receiving, inspecting, handling, and storing project-related instrumentation equipment.

Wire and Fasteners (7.5 Hours)
(Module ID 12104-14) Explains how to properly identify, select, and install threaded and non-threaded fasteners and anchors used in instrumentation work.

Temperature, Pressure, Level, and Flow (10 Hours)
(Module ID 12110-15) Teaches how to recognize, select, and properly install temperature, pressure, level, and flow instrument devices. Also covers the basic principles involved in operation of each device.

Instrument Fitter’s Math (15 Hours)
(Module ID 12301-15) Discusses the application of right triangles in bending and installing tubing and conduit as it applies to instrumentation. Shows how to use a scientific calculator in applying instrumentation piping and fitting math.

Instrument Drawings and Documents, Part Two (17.5 Hours)
(Module ID 12202-15) Covers reading and interpreting piping and instrumentation drawings, loop sheets, flow diagrams, isometrics, and orthographics to enable the identification of types of instrumentation and the specifications for installation.

Gaskets, O-Rings, and Packing (10 Hours)
(Module ID 12108-14) Teaches how to recognize, select, and properly install gaskets, packing, and O-rings. Covers the various materials used in gaskets and O-rings, along with their applications and limitations.

Lubricants, Sealants, and Cleaners (7.5 Hours)
ISBN 978-0-13-378844-0
(Module ID 12109-14) Covers the proper use, storage, handling, and safety practices associated with various lubricants, cutting fluids, sealants, and cleaners. Includes coverage of the tools and materials used in applying lubricants and cleaning products.

Steel Piping Practices (10 Hours)
(Module ID 12116-14) Covers both carbon steel and stainless steel piping, as it applies to instrumentation work. Includes instructions for calculating pipe cut length, cutting, deburring, reaming, bending, and joining of tubing.

Tubing (15 Hours)
(Module ID 12111-14) Introduces types of tubing, tubing materials, fittings, and tools. Covers proper storage and handling, cutting, deburring, reaming, bending, and joining of tubing.

Hoses (7.5 Hours)
(Module ID 12113-14) Describes different types of hoses and related fittings, along with proper storage and handling. Includes instructions for cutting hoses and installing standard reusable fittings.

To Order Call: 1-800-922-0579

Stay Connected:

- www.nccer.org/instructors
- ©NCCER

Continued on following page
Instrumentation Level 2 (continued)

Raceways for Instrumentation (17.5 Hours)
(Module ID 12214-15) Introduces raceways. Also covers identification and selection of conduit, raceways, wireways, cable trays, fittings, and NEC® requirements for installation.

Clean, Purge, and Test Tubing and Piping Systems (10 Hours)
(Module ID 12303-15) Presents safe methods for cleaning, purging, blowing down, pressure testing, and leak testing tubing, piping, and hoses used in instrumentation.

Protective Measures for Instrumentation (20 Hours)
(Module ID 12308-15) Covers protective measures applied in instrumentation installations, including heat tracing, chemical treatment, and insulation.

Layout and Installation of Tubing and Piping Systems (25 Hours)
(Module ID 12302-15) Introduces piping and tubing layout procedures. Explains the steps in creating a hand-sketch isometric drawing that can be applied in the piping and tubing installation. Introduces methods and procedures used to measure, cut, and bend and support piping and tubing.

Instrument Air Filters, Regulators, and Dryers (7.5 Hours)
(Module ID 12210-15) Presents the construction, operation, and uses of filters, regulators, and dryers. Covers identification and selection of the correct component for installation using applicable specifications and schematics.

Detectors, Secondary Elements, Transducers, and Transmitters (25 Hours)
(Module ID 12205-16) Introduces instrumentation devices that detect different process variables, devices that change the variable into a transmittable form, and devices that transmit the information to another device for control or informational purposes. Covers devices that sense flow, level, temperature, and pressure, along with various types of transducers and transmitters.

Instrumentation Electrical Circuitry (25 Hours)
(Module ID 12305-16) Describes various types of series and parallel circuits; resistance, inductance, and capacitance in AC circuits; DC power supplies; analog and digital signals; and common applications of electrical and electronic circuitry.

Relays and Timers (10 Hours)
(Module ID 12208-16) Presents the principles of operation and applications of various relays and timers. Also reviews the selection process for these devices.

Switches and Photoelectric Devices (10 Hours)
(Module ID 12209-16) Covers the principles of operation and applications of switches and photoelectric devices in the instrumentation environment.

Controllers (10 Hours)
(Module ID 12206-16) Covers the theory of operation and the application of common process controllers, including both pneumatic and electronic devices.

Proving, Commissioning, and Troubleshooting a Loop (15 Hours)
(Module ID 12402-16) Covers the application of common process controllers, including both pneumatic and electronic devices.

Tuning Loops (15 Hours)
ISBN 978-0-13-448303-0
(Module ID 12405-16) Introduces the techniques used in tuning loops employing PID control. Includes basic tuning theory and formulas. Examines open, closed, and visual loop tuning methods.

Continued on following page
Instrumentation Level 4 (continued)

Digital Logic Circuits (15 Hours)
ISBN 978-0-13-448305-4
(Module ID 12401-16) Introduces the basic ideas of digital electronics. Presents gates, combination logic, and truth tables. Addresses memory devices, counters, and arithmetic circuits as well as the numbering systems commonly used in digital systems.

Programmable Logic Controllers (12.5 Hours)
(Module ID 12406-16) Introduces PLCs and their uses in industrial control. Includes hardware components, applications, communications, number systems, and programming methods.

Distributed Control Systems (15 Hours)
(Module ID 12407-16) Surveys DCS technologies, including an overview of their development. Discusses key components, fieldbuses, servers, and human-machine interfaces. Also introduces maintenance and the increasingly important aspect of DCS security.

Analyzers and Monitors (30 Hours)
(Module ID 12409-16) Introduces the key concepts of chemistry, with an emphasis on their application in instrumentation. Explains crucial physical and chemical properties of matter. Discusses the different analytical methods used in industry to assess processes. Includes pH, conductivity, ORP, gas analysis, and particulate counts. Explores specific instruments and techniques.