Electrical Formulas

General Formulas

The following formula wheel can be used for all direct current circuits and alternating current circuits with unity power factor.

Voltage Drop Formulas

Voltage Drop
$$(1\emptyset) = 2 \times L \times K \times I$$

CM

Voltage Drop
$$(3\emptyset) = 1.732 \times L \times K \times I$$

CM

K = direct current resistance for a 1,000 circular mil conductor 1,000 feet long operating at 75°C..

K = 12.9 ohms for copper K = 21.2 ohms for aluminum (From NEC - Chapter 9, Table 8)

L = One way length of circuit in feet I = Current in conductor in amperes

Voltage Drop $(1\emptyset) = R \times I$ R = Resistance of both conductors

Voltage Drop $(3\emptyset) = R \times I \times 1.732$ R = Resistance of one conductor

 $V_L = V$ Line = Source Voltage $V_P = V$ Phase = Phase Voltage $V_L = V_P$

 $I_L = I$ Line = Line Current $I_P = I$ Phase = Phase Current $I_L = I_P \times 1.732$ $I_P = I_L / 1.732$

Power = W = $\sqrt{3}$ x V_LI_L cos θ = 3 I_p²R = 3 V_pI_p cos θ

WYE

 $V_L = V$ Line = Source Voltage $V_P = V$ Phase = Phase Voltage $V_L = V_P \times 1.732$

$$\begin{split} &I_L = I \text{ Line} = Line \text{ Current} \\ &I_P = I \text{ Phase} = Phase \text{ Current} \\ &I_L = I_P \end{split}$$

Power = W = $\sqrt{3} \times V_L I_L \cos \theta$ = $3 I_p^2 R$ = $3 V_p I_p \cos \theta$

Power Factor = True Power
Apparent Power

Note 1 - Use copper conductors for all problems, unless otherwise specified.

Note 2 - One horse power is equal to 746 watts.

Note 3 - Power factor (P.F.) = $\cos \theta = R/Z$, Z = Impedance.

Note 4 - Efficiency = Output/Input