
# **Instrumentation Formulas**

## For use with the following assessments:

- Instrumentation Fitter
- Instrumentation Technician
- Industrial Maintenance Electrical & Instrumentation Technician

#### **Power Formulas**



#### **Resistance Formulas**

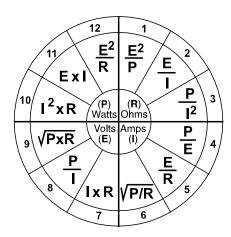
$$TR = \frac{1}{(1/R1) + (1/R2) + (1/R3)}$$

#### **Temperature Formulas**

°C = 
$$\frac{5}{9}$$
 (°F - 32)  
°F = (1.8 x °C) + 32

#### **Pressure Formulas**

"H20 = PSI x 27.68


PSIA = PSIG + 14.7 PSI

Absolute vacuum pressure = Barometric pressure – vacuum gauge reading

### **Electrical Formulas**

#### **General Formulas**

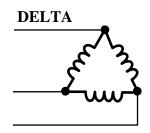
The following formula wheel can be used for all direct current circuits and alternating current circuits with unity power factor.



#### **Voltage Drop Formulas**

Voltage Drop 
$$(1\varnothing) = \frac{2 \times L \times K \times I}{CM}$$

Voltage Drop 
$$(3\varnothing) = \underline{1.732 \times L \times K \times I}$$
  
CM

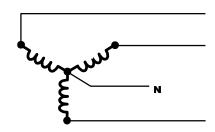

K = direct current resistance for a 1,000 circular mil conductor 1,000 feet long operating at 75°C

K = 12.9 ohms for copper K = 21.2 ohms for aluminum (From NEC - Chapter 9, Table 8)

L = One way length of circuit in feet I = Current in conductor in amperes

Voltage Drop  $(1\emptyset) = R \times I$ R = Resistance of both conductors

Voltage Drop  $(3\emptyset)$  = R x I x 1.732 R = Resistance of one conductor




$$V_L = V$$
 Line = Source Voltage  $V_P = V$  Phase = Phase Voltage  $V_L = V_P$ 

$$\begin{split} &I_L = I \; Line = Line \; Current \\ &I_P = I \; Phase = Phase \; Current \\ &I_L = I_P \; x \; 1.732 \\ &I_P = I_L \; / 1.732 \end{split}$$

Power = W = 
$$\sqrt{3}$$
 x V<sub>L</sub>I<sub>L</sub> cos  $\theta$   
= 3 I<sub>p</sub><sup>2</sup>R  
= 3 V<sub>p</sub>I<sub>p</sub> cos  $\theta$ 

#### WYE



$$V_L = V$$
 Line = Source Voltage  $V_P = V$  Phase = Phase Voltage  $V_L = V_P \times 1.732$ 

$$\begin{split} &I_L = I \; Line = Line \; Current \\ &I_P = I \; Phase = Phase \; Current \\ &I_L = I_P \end{split}$$

Power = W = 
$$\sqrt{3}$$
 x V<sub>L</sub>I<sub>L</sub> cos  $\theta$   
= 3 I<sub>p</sub><sup>2</sup>R  
= 3 V<sub>p</sub>I<sub>p</sub> cos  $\theta$ 

- Note 1 Use copper conductors for all problems, unless otherwise specified.
- **Note 2 -** One horse power is equal to 746 watts.
- **Note 3 -** Power factor (P.F.) =  $\cos \theta = R/Z$ , Z = Impedance.
- **Note 4 -** Efficiency = Output/Input