This load chart has been adapted from the original manufacturer’s load chart for use in the NCCER Mobile Crane Certification Examination. It is not to be used for calculating loads, planning lifts, or for any other purpose.
Section 9. CAPACITY PLACARDS

CRANE CAPACITY PLACARDS

Your IMT crane is designed for specific loads. Those loads are described on the
capacity placard which is mounted near the
normal operator’s station. Exceeding the
limits presented on the capacity placard will
create severe safety hazards and will shorten
the life of the crane. The operator and other
personnel must know the load
capacities of the crane and the weight of the
load being lifted!

WARNING
NEVER EXCEED THE CRANE’S RATED LOAD
CAPACITIES. DOING SO WILL CAUSE
STRUCTURAL DAMAGE AND DAMAGE TO
WINCHES AND CABLES WHICH CAN LEAD
TO SERIOUS INJURIES OR DEATH.

Capacity placards for telescoping and
articulating cranes vary in their graphic
representation of load limits while
presenting load ranges (See Figures I-4 and
I-5 for comparison). Any load handling
equipment such as hooks, cables and
attachments must be added to the weight of
the load being lifted. As these attachments
vary widely, it is the operator’s
responsibility to account for their added
weight.

Other variables which must be accounted for
and considered in the amount of weight
being lifted are conditions of the surface
supporting the outrigger and carrier vehicle,
wind speed, out-of-level positioning of the
vehicle or crane, and variations in operating
speed.

CAPACITY CONDITIONS

The capacity placard information is based on
the crane, winch, cable and outriggers being
structurally sound and a stability tipping
factor of 85%.

Conditions which must be met to provide for
stated capacity placard ratings are as follows:
1. Outriggers fully extended and outrigger
pads firmly contacted with a solid,
stable and level surface.
2. The crane has been installed on a
factory approved vehicle and in a
factory approved fashion.
3. The carrier vehicle’s tires are properly
inflated.
4. Any load handling devices have been
added to the weight being lifted.
5. Extreme wind velocities are not
present.
6. The crane is operated in a smooth and
controlled manner.
7. Any required counterweights have been
added.

USING THE CAPACITY PLACARD
(ARTICULATING CRANES)

Perform the following steps before a load is
lifted (Refer to Figure I-4):
1. Determine the weight of the load.
2. Determine the weight of any load
handling devices.
3. Add the weight of the load and the
weight of the load handling devices.
The sum will be the total weight of the
load being lifted.
4. Determine the distance from the
centerline of crane rotation to the
centerline of the load being lifted.
5. Determine the distance from the
centerline of crane rotation to the
centerline of where the load is to be
moved to.
6. The actual distance used should be
figured as the larger of items 4 and 5
above.
7. Refer to the crane’s capacity placard
and determine within which range the
lift will be accomplished.
8. Refer to the capacity of that range to be
certain the load being lifted does not
exceed the crane’s capacity within that
range.
9. If a winch is used for the lift, make
certain the load does not exceed the
winch or winch line capacity. See
Figures I-1, I-2 and I-3.
USING THE CAPACITY PLACARD (TELESCOPING CRANES)

Perform the following steps before a load is lifted:

1. Determine the weight of the load.

2. Determine the weight of any load handling devices.

3. Add the weight of the load and the weight of the load handling devices. The sum will be the total weight of the load being lifted.

4. Determine the distance from the centerline of crane rotation to the centerline of the load being lifted.

5. Determine the distance from the centerline of crane rotation to the centerline of where the load is to be moved to.

6. The actual distance used should be figured as the larger of items 4 and 5 above.

7. Determine at what angle the crane will be operated (for example 30°, 45°, etc.) by referencing the angle indicator on the lower boom.

8. Make certain that 2-part line is used for any lift which requires 2-part line. See Figures I-1 and I-2.

See Figure I-5 for reference.

WARNING

Winches rig with single or multi-part lines may have the ability to exceed crane capacities. Refer to the crane’s capacity placard noting the angle required for the lift and the range of the lift at that angle. Make certain the total load being lifted does not exceed the crane’s capacity at that angle and range.

Figure I-1. One-Part Line Configuration

Figure I-2. Two-Part Line Configuration

Figure I-3. Three-Part Line Configuration
NOTE

The capacity placard shown on this page is an example only! The capacities are not intended for use on any particular crane.

1. Crane model number.
2. This note is a reminder that it is necessary to add the weight of load handling devices to the weight of the object being lifted in order to derive the actual total load being lifted.
3. Crane booms shown at their maximum elevation.
4. Crane booms shown at their maximum reach from centerline of rotation.
5. Range designation (1, 2, 3, 4) which are to be compared to the range capacity chart shown as item 6. Range 1 indicates a load attached to the outer boom hook and kept within a distance of 6'-0" (1.83 meters) from the centerline of rotation. Range 2 indicates a load attached to the outer boom hook but operated through its maximum range of 10'-0" (3.05 meters) from centerline of rotation. Range 3 indicates a load attached to the fully retracted extension boom at a maximum distance from centerline of rotation of 13'-5" (4.09 meters). Range 4 indicates a load attached to the fully extended extension boom at the cranes maximum range of 17'-5" (5.31 meters).
6. The load/range chart indicates the maximum total load allowable within specified ranges. For example: any lift within Range 3 will be limited to 3600 pounds (1633 kilograms) at 13'-5" from centerline of rotation. See Note 1, 2 and 3.
7. Lifting height reference dimensions from ground level. If your crane is mounted on other than a normal carrier vehicle, add or subtract variances to or from these dimensions. See Note 2.

Note 1. Capacities are normally shown in pounds first with their converted metric equivalent in kilograms also listed.
Note 2. Dimensions are normally shown in feet and inches first with their converted metric equivalent in meters also listed.
Note 3. Occasionally capacity placards may contain translations of the English language in French, Spanish, etc.

Figure I-4. Articulating Crane Capacity Placard Description
FIGURE-FOUR FOLDING CRANES

The Figure-Four folding cranes can be considered as self-storing as the inner, outer and extension booms are stored within the mast structure. Although this feature provides convenience of storage it also requires special safety considerations during the act of folding and unfolding. Figures J-7, J-8 and J-9 illustrate the steps to be taken during these procedures.

Figure J-7. Stow/Unfold Decal

1. EXTEND AND LOWER OUTRIGGERS.
 (UNFASTEN HOOK-BLOCK IF PRESENT.)
2A. RETRACT EXTENSIONS.
2B. LOWER OUTER BOOM.

2C. EXTEND INNER BOOM.

3. EXTEND OUTER BOOM.

Figure J-8. Unfolding Sequence
OUTRIGGER OPERATION

Of all of the hydraulically operated components on a crane, the outriggers can be the most hazardous. This is because of their close proximity to the operator and other personnel. They are the only component of the crane which normally contacts the ground. Three distinct hazards exist in their operation: first, the possibility of the outriggers contacting persons while moving outward; secondly, the capability of the outriggers causing severe crushing injury when contacting the ground; and thirdly, the possibility of pinching injuries occurring when the outriggers are being retracted.

There are various outrigger designs available, but all require extreme caution in their use. Refer to Figures J-13, J-14, J-15 and J-16 for proper outrigger operation sequence and warnings.

1. **BEFORE AND DURING OPERATION, BE CERTAIN NO PERSONNEL ARE IN OR NEAR THE OUTRIGGER'S PATH.**

 THE OPERATOR MUST KEEP VISUAL CONTACT WITH THE OUTRIGGERS BEING DEPLOYED. FOR EXAMPLE: DEPLOY STREETSIDE OUTRIGGERS FROM STREETSIDE CONTROLS.

2. **EXTEND THE OUTRIGGER ARMS HORIZONTALLY TO THEIR FULL OPERATING LIMIT.**

3. **EXTEND THE OUTRIGGER LEGS UNTIL FULLY CONTACTED WITH THE GROUND AND SOLID STABILITY IS ACHIEVED.**

Figure J-13. Outrigger Deployment Sequence
1. **BEFORE AND DURING OPERATION, BE CERTAIN NO PERSONNEL ARE IN OR NEAR THE OUTRIGGER’S PATH. THE OPERATOR MUST KEEP VISUAL CONTACT WITH THE OUTRIGGER BEING DEPLOYED. FOR EXAMPLE: DEPLOY STREETSIDE OUTRIGGERS FROM STREETSIDE CONTROLS.**

1A. **CRANE MUST BE IN STOWED POSITION BEFORE PROCEEDING.**

2. **RETRACT THE OUTRIGGER LEGS TO THEIR FULL STORED POSITION.**

3. **RETRACT THE OUTRIGGER ARMS TO THEIR FULL STORED POSITION.**
DIRECTION TERMINOLOGY

Various terms may be used to describe directions associated with crane operation. Illustrated here are some of those terms and their variations.

Figure J-17. Crane Operation Directional Terminology